Eigenvalues of a real supersymmetric tensor

نویسنده

  • Liqun Qi
چکیده

In this paper, we define the symmetric hyperdeterminant, eigenvalues and E-eigenvalues of a real supersymmetric tensor. We show that eigenvalues are roots of a one-dimensional polynomial, and when the order of the tensor is even, E-eigenvalues are roots of another one-dimensional polynomial. These two one-dimensional polynomials are associated with the symmetric hyperdeterminant. We call them the characteristic polynomial and the E-characteristic polynomial of that supersymmetric tensor. Real eigenvalues (E-eigenvalues) with real eigenvectors (E-eigenvectors) are called H-eigenvalues (Z-eigenvalues). When the order of the supersymmetric tensor is even, H-eigenvalues (Z-eigenvalues) exist and the supersymmetric tensor is positive definite if and only if all of its H-eigenvalues (Z-eigenvalues) are positive. An mth-order n-dimensional supersymmetric tensor where m is even has exactly n(m − 1)n−1 eigenvalues, and the number of its E-eigenvalues is strictly less than n(m − 1)n−1 when m ≥ 4. We show that the product of all the eigenvalues is equal to the value of the symmetric hyperdeterminant, while the sum of all the eigenvalues is equal to the sum of the diagonal elements of that supersymmetric tensor, multiplied by (m − 1)n−1. The n(m−1)n−1 eigenvalues are distributed in n disks in C. The centers and radii of these n disks are the diagonal elements, and the sums of the absolute values of the corresponding off-diagonal elements, of that supersymmetric tensor. On the other hand, E-eigenvalues are invariant under orthogonal transformations. © 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada

Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...

متن کامل

Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines

A real n-dimensional homogeneous polynomial f (x) of degree m and a real constant c define an algebraic hypersurface S whose points satisfy f (x) = c. The polynomial f can be represented by Axm where A is a real mth order n-dimensional supersymmetric tensor. In this paper, we define rank, base index and eigenvalues for the polynomial f , the hypersurface S and the tensor A. The rank is a nonneg...

متن کامل

Center of Mass Estimation of Simple Shaped Magnetic Bodies Using Eigenvectors of Computed Magnetic Gradient Tensor

Computed Magnetic Gradient Tensor (CMGT) includes the first derivatives of three components of magnetic field of a body. At the eigenvector analysis of Gravity Gradient Tensors (GGT) for a line of poles and point pole, the eigenvectors of the largest eigenvalues (first eigenvectors) point precisely toward the Center of Mass (COM) of a body. However, due to the nature of the magnetic field, it i...

متن کامل

The Sign-Real Spectral Radius for Real Tensors

In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.

متن کامل

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2005